Organic Nitrogen Sources for Vegetable Crops

Mark Gaskell, Farm Advisor
University of California Cooperative Extension,
624 West Foster Rd.
Santa Maria, CA 93455
Background and overview

- Fertilization is the most expensive cultural practice of organic vegetable growers in California.

- Compost and green manure cover crops have long been the basis for organic fertilization regimes.

- Mineralization of N from compost and cover crops can be quite variable and depend upon the type of material, time of year, cultural practices.
Compost and cover crops

- Still some of more economical forms of N despite their limitations
- Often sighted as slow release N sources
 - later N release not useful for the succeeding crop
- Synchrony of N release is critical limitation
- Legumes release N more quickly than grasses
Residual NO₃-N (ppm)

Date

19-May 2-Jun 16-Jun 30-Jun 14-Jul 28-Jul 11-Aug

+ GM - GM
Weeks

Rate of N Mineralization or Crop N Uptake

Crop Demand

Fertilizer Mineralization

Cover Crop Mineralization

Cover Crop Incorporation

Soil organic matter mineralization

Weeks

Rate of N Mineralization or Crop N Uptake
Pattern of release from pre-plant incorporated N sources may not adequately match crop need for N

- Release of N for 6-8 weeks - temperature? - then returns to soil background levels
- Chilean nitrate used in some programs - severe restrictions
- Other potential organic fertilizer N sources evaluated - vary in N cost and N mineralization rate.
- Materials evaluated include: seabird guano, liquid fish, pelleted chicken manure, feather meal, corn meal, blood meal, liquid soybean meal among others.
Residual Soil Nitrate-N (ppm) vs. Date and N Applied (lb/A)
Residual Soil Nitrate-N (ppm)

N Applied (kg/ha)

Date

Feather Meal

5/11 5/25 6/8 6/22 7/6 7/12 8/3 8/17

296

208

120

0
When does N come available?
Feather better than compost

Residual Nitrate-N (ppm)

Date

Compost Feather Zero

180 lb N / A
Date

- 19-May
- 2-Jun
- 16-Jun
- 30-Jun
- 14-Jul
- 28-Jul
- 11-Aug

Residual Nitrate N (ppm)

- Feather+GM
- Feather-GM
- Comp+GM
- Comp-GM
- O-GM

208 lb N / A
Materials vary in cost and efficacy so green manure and compost are still important for pre-plant application.
<table>
<thead>
<tr>
<th>Product</th>
<th>Temp (°F)</th>
<th>1 week</th>
<th>4 weeks</th>
<th>8 weeks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pelleted poultry manure</td>
<td>59</td>
<td>4</td>
<td>16</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>77</td>
<td>10</td>
<td>23</td>
<td>36</td>
</tr>
<tr>
<td>Sea bird guano</td>
<td>59</td>
<td>49</td>
<td>57</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>77</td>
<td>45</td>
<td>48</td>
<td>54</td>
</tr>
<tr>
<td>Pelleted sea bird guano</td>
<td>59</td>
<td>42</td>
<td>61</td>
<td>64</td>
</tr>
<tr>
<td></td>
<td>77</td>
<td>46</td>
<td>60</td>
<td>67</td>
</tr>
<tr>
<td>Fish powder</td>
<td>59</td>
<td>51</td>
<td>55</td>
<td>61</td>
</tr>
<tr>
<td></td>
<td>77</td>
<td>48</td>
<td>60</td>
<td>64</td>
</tr>
<tr>
<td>Feather meal</td>
<td>59</td>
<td>42</td>
<td>56</td>
<td>59</td>
</tr>
<tr>
<td></td>
<td>77</td>
<td>50</td>
<td>64</td>
<td>63</td>
</tr>
<tr>
<td>Blood meal</td>
<td>59</td>
<td>41</td>
<td>60</td>
<td>64</td>
</tr>
<tr>
<td></td>
<td>77</td>
<td>51</td>
<td>67</td>
<td>70</td>
</tr>
<tr>
<td>Organic fertilizer</td>
<td>% of initial N</td>
<td>lb / ton</td>
<td>$ / ton</td>
<td>$ / lb available N</td>
</tr>
<tr>
<td>------------------------------------</td>
<td>----------------</td>
<td>----------</td>
<td>---------</td>
<td>--------------------</td>
</tr>
<tr>
<td>Pelleted poultry manure</td>
<td>46</td>
<td>26</td>
<td>70</td>
<td>2.70</td>
</tr>
<tr>
<td>Sea bird guano</td>
<td>79</td>
<td>175</td>
<td>400</td>
<td>2.30</td>
</tr>
<tr>
<td>Pelleted sea bird guano</td>
<td>74</td>
<td>173</td>
<td>700</td>
<td>4.00</td>
</tr>
<tr>
<td>Fish powder</td>
<td>65</td>
<td>178</td>
<td>4,000</td>
<td>22.50</td>
</tr>
<tr>
<td>Feather meal</td>
<td>63</td>
<td>179</td>
<td>600</td>
<td>3.60</td>
</tr>
<tr>
<td>Blood meal</td>
<td>70</td>
<td>221</td>
<td>1,000</td>
<td>4.50</td>
</tr>
</tbody>
</table>

(Hartz and Johnston, 2006)
Liquid N Sources

- Variation in types, costs of materials. Variation in suitability for micro-irrigation.

- Sieve sizing or grind size critical for use in drip and micro-irrigation systems and this will affect value as N source.
 - does N stay behind the filter with organic matter?

- Some organic growers choose to use cheap tape and replace with each vegetable crop but this avoids problem of N availability.

- Additional work needed
Other organic fertilizer problem areas

- lack uniformity
- bulky,
- unstable,
- inconsistency --> hidden management costs
- higher cost and variability for research

- Liquid organic N sources for use in micro irrigation systems - can be some of most cost effective but additional disadvantages associated with N that is removed by filters.
Summary

- Green manure crops or pre-plant compost are the most economical organic sources of N but many crops need supplemental N.

- Diverse organic amendments available as N nutrient sources but bulk, uniformity, stability problems slow development of reliable response data.

- Other N amendments - feather meal, guano, liquid fish, among others - vary widely in N availability but are more efficient than compost for later season N side dressing.

- Liquid organic fertilizers are also variable. Smaller particle sizes necessary for micro-irrigation should aid N availability.
Yield effects?
Organic Nitrogen Sources for Vegetable Crops

Mark Gaskell, Farm Advisor
University of California Cooperative Extension,
624 West Foster Rd.
Santa Maria, CA 93455
Pepper yield in response to increasing N application

- Often no differences in total yield - even in cases where relatively high NO$_3$-N in soil.

- Increasing yield of early peppers or extra-large peppers have been observed in response to increasing rates of N as feather meal. No increase from compost - even at higher rates of N.
 - related to higher soil NO$_3$-N

- Yield of early and extra large peppers reached max. yield with 100 lb N/A with prior GM crop but without prior GM crop, required 200 lb / A.
$R^2 = 0.59^{**}$

Cabbage Yield (lb/plot)

Nitrogen Applied (lb/A)
Soil and Tissue Nitrogen and Fall Cabbage Yield Associated with Varying Rates of Nitrogen Applied as Different Organic Sources

- Seven types of organic fertilizers - feather meal (13% N), blood meal (14% N), liquid fish waste (6% N), a micronized liquid feather meal (4% N), a micronized feather / blood meal (13% N) for injection as a liquid suspension, and the two micronized materials with an added microbial inoculant - were each applied to fall cabbage at N rates of 0, 90, 180 lb A.¹ Weekly residual soil nitrate N (SNN) was proportional to applied N rate much of the season and varied from 5 to over 70 ppm. Marketable yield ranged from 8000 to 33,300 lb A.¹ The SNN was highest with the liquid fish waste most weeks and marketable cabbage yield was also highest following application of 180 lb A.¹ of liquid fish waste. A positive marketable yield response to increasing rates of applied N was also observed for the other organic N materials.