Advanced Mechanization and Automation for Specialty Crop Production

Stavros Vougioukas, Assistant Professor
Biological and Agricultural Engineering
UC Davis
What decade was each machine built in?

1968

2008
One more typical example...

Courtesy of: Ernst Van Eeghen, Church Brothers/True Leaf Farms
Mechanization for specialty crops – harvesting in particular – is lagging..

- **Societal and political reasons**
 - Federal and state R&D funding had stopped for ~ 30 yrs.

- **Economics**
 - Huge variety of crops demands custom solutions;
 - Fragmentation discourages private investment in R&D;
 - Labor has been cheap and available.

- **Technical**
 - Fresh market fruits and vegetables:
 - Must be harvested gently to look ‘perfect’ on the shelf;
 - Must be often harvested selectively;
 - Must be harvested efficiently and quickly.
• Shake-catch causes unacceptable damage.

• Robotic fruit picking efficiency & throughput are low.

• Harvest-aids are often inefficient.
Current research projects

- Robot-aided harvesting.
- Virtual harvesting.
FRAIL-BOTS:
Fragile cRop hArvest-alding mobiLe roBOTS

Stavros Vougioukas (PI), David Slaughter, Fadi Fathallah, Karen Klonsky

Department of Biological & Agricultural Engineering
University of California, Davis, CA 95616

Supported by:
National Institute of Food and Agriculture
Manual harvesting

An expensive, labor-intensive operation associated with:

- Non-productive crop transport time in excess of 20%.
- Slipping accidents during crop transport.
- Ergonomics related musculoskeletal disorders.
Approach

Adopt and extend concepts from *Flexible Manufacturing Systems.*
Robot-aided harvesting: Project Goals

- Lay the scientific and technical foundation for teams of co-robots that:
 - Act as an intelligent courier service that transports harvested crops;
 - Reduce non-productive time;
 - Protect worker health by reducing slipping accidents;
 - Attend to harvesting ergonomics;

- Explore economic feasibility;
- Demonstrate prototype system in field conditions.
Worker awareness

- Worker positions, postures, body motions, and picking rate assessed via wearable and robot sensors.
Robot dispatching

• **Minimize:**
 - Worker waiting times (efficiency);
 - Vibration & crop-transport time (postharvest quality);
 - Energy consumption (robot field-life).
Virtual harvesting

Funded by:

Canning Peach Mechanization Research Fund

California Pear Advisory Board
Can we build cost-effective fruit harvesting machines for existing tree architectures?
How do different training systems affect mechanized harvesting?

- Standard
- Double leader
- V-hedge
- Open tatura
- Palmette
- Super Spindle
3D fruit-map (Bartlett pears)
Methodology
Estimated 3D fruit distribution
Large Open-Vase Trees

Radial distance of fruits from trunk
Harvesting Large Open-Vase Trees

• Robotic picking at high speed is ‘challenging’;
 ➢ Arms with reach of 8-10 ft would be too massive to be fast enough;
 ➢ Significant fruit-to-fruit travel;
 ➢ Severe branch interference.

• How can we evaluate alternative designs?
High-density Trellised Trees (Bartlett pears)
High-density Trellised Trees (Bartlett pears)
High-density Trellised Trees (Bartlett pears)

- Robot arms with reach of ~ 3ft can be fast (1 cycle/s).
Design Issues

- Could actuator arrays achieve high picking efficiency and speed?
- How many arms (~ 30k/arm)?
- How much do branches interfere?
- What types of arms?
- In what configuration?
- ...
- How can we evaluate alternative designs?
Machine development process

- Relies heavily on field testing.
- Costly & slow.
- Funding usually runs out...
Model-based design

- Machine design
- Model
- Virtual Machine
- Breeding
- Cultivation/training
Virtual harvesting

Tree geometries & orchard layout

3D fruit distributions

Machine & worker models

Design tool
Virtual harvesting
Picking efficiency and throughput
What could the future bring?

• Functional-structural plant models.
Thank you!

Acknowledgements:

• Co-Pis
 ➢ David Slaughter
 ➢ Fadi Fathallah
 ➢ Karen Klonsky

• Numerous California growers.

• Farm advisors:
 ➢ Rachel Elkins, UCANR Extension, Lake and Mendocino Counties
 ➢ Roger Duncan, UCANR Extension, Stanislaus County
 ➢ Janine Hasey, UC Extension, Sutter & Yuba Counties
 ➢ Chuck Ingels, UCANR Extension, Sacramento County

• Students:
 ➢ Raj Rajkishan, Jason Wong, Farangis Khosro Anjom, Garren Lewis, Fransisco Jimenez.