Strawberry Pests and Diseases: IPM Studies and the Pallidosis-related Decline

Surendra Dara
Strawberry and Vegetable Crops Advisor and Affiliated IPM Advisor
San Luis Obispo, Santa Barbara, and Ventura Counties
University of California Cooperative Extension

skdara@ucdavis.edu

@calstrawberries @calveggies strawberriesvegetables ucanr.org/strawberries-vegetables and ucanr.org/pestnews

Strawberry meeting 20 November, 2013
Strawberry-IPM trial 2012

<table>
<thead>
<tr>
<th>BEDS</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Treatments:

1. Untreated control
2. Assail 70 WP (acetamiprid) 3 oz/ac in 50 gal
3. BotaniGard WP (*Beauveria bassiana*) 2lb/ac in 50 gal
4. BotaniGard WP 2lb/ac + Molt-X (azadirachtin) 8 fl oz/ac in 50 gal
5. BotaniGard WP 2lb/ac + Danitol (fenpropathrin) ½ label rate 5.3 fl oz/ac in 50 gal
6. BotaniGard WP 2lb/ac + Assail ½ label rate 1.5 oz/ac in 50 gal
7. AzaGuard (azadirachtin) 8 fl oz/ac in 50 gal
8. AzaGuard 16 fl oz/ac in 50 gal
9. Rimon 0.83 EC (novaluran) 12 fl oz/ac + Brigade (bifenthrin) 16 oz/ac in 50 gal

Experimental period: July-August, 2012
Strawberry-IPM trial 2012

All stages of Lygus

insects/20 plants

Untreated, Acetamiprid (Assai)
Strawberry-IPM trial 2012

Lygus population change during the trial period

- Percent change in lygus bug population

- I Spray
- II Spray
- III Spray

- Untreated
- Acetamiprid (Assail)
- Bb (BotaniGard)
- Bb+Azas (BotaniGard+MoltX)
- Bb+1/2 Fenpropatrin (BotaniGard+1/2Danitol)
- Bb+1/2 Acetamiprid (BotaniGard+1/2Assail)
- Aza 8 fl oz (AzaGuard)
- Aza 16 fl oz (AzaGuard)
- Novaluron+Bifenthrin (Rimon+Brigade)
Strawberry-IPM trial 2013
Strawberry-IPM trial 2013

<table>
<thead>
<tr>
<th>Variety: Virtue</th>
<th>Spray volume: 50 gpa</th>
<th>Applied on: 5/14, 22 and 29</th>
</tr>
</thead>
<tbody>
<tr>
<td>1<sup>st</sup> application (Rate/acre)</td>
<td>2<sup>nd</sup> application (Rate/acre)</td>
<td>3<sup>rd</sup> application (Rate/acre)</td>
</tr>
<tr>
<td>1</td>
<td>Untreated</td>
<td>Untreated</td>
</tr>
<tr>
<td>2</td>
<td>Assail 70 WP (3 oz)</td>
<td>Assail 70 WP (3 oz)</td>
</tr>
<tr>
<td>3</td>
<td>Beleaf 50 SG (2.8 oz)</td>
<td>Beleaf 50 SG (2.8 oz)</td>
</tr>
<tr>
<td>4</td>
<td>Athena (17 fl oz)</td>
<td>Athena (17 fl oz)</td>
</tr>
<tr>
<td>5</td>
<td>Rimon 0.83 EC (12 fl oz) + Brigade (16 oz)</td>
<td>Rimon 0.83 EC (12 fl oz) + Brigade (16 oz)</td>
</tr>
<tr>
<td>6</td>
<td>Rimon 0.83 EC (12 fl oz) + Brigade (16 oz)</td>
<td>BotaniGard ES (2 qrt) + Molt-X (8 fl oz)</td>
</tr>
<tr>
<td>7</td>
<td>Grandevo (2 lb)</td>
<td>Grandevo (2 lb)</td>
</tr>
<tr>
<td>8</td>
<td>BotaniGard ES (2 qrt) + Molt-X (8 fl oz)</td>
<td>Grandevo (2 lb)</td>
</tr>
<tr>
<td>9</td>
<td>EverGreen (16 fl oz)</td>
<td>EverGreen (16 fl oz)</td>
</tr>
<tr>
<td>10</td>
<td>BotaniGard ES (2 qrt) + Low Assail (1.5 oz)</td>
<td>BotaniGard ES (2 qrt) + Low Beleaf 50 SG (1.4 oz)</td>
</tr>
<tr>
<td>11</td>
<td>Closer (4.5 oz)</td>
<td>Closer (4.5 oz)</td>
</tr>
<tr>
<td>12</td>
<td>Closer (3 oz)</td>
<td>Closer (3 oz)</td>
</tr>
</tbody>
</table>
Strawberry-IPM trial 2013

Number of lygus nymphs and adults/20 plants

- Pre-treatment
- Post-treatment

Options:
- Untreated
- Assail-Assail
- Beleaf
- Athena
- Rimon+Brigade
- R+B
- EverGreen
- Molt
- Bot+M
- Grandevo
- BotaniGard
- Grandevio
- EverGreen
- Bot+Assail
- Bot+Bel
- Closer Hi
- Bot+Grand
- Closerlo+Bel

Graph shows the comparison of number of lygus nymphs and adults pre- and post-treatment for different treatments.
Strawberry-IPM trial 2013

Percent change in lygus after each application

I Spray II Spray III Spray
Strawberry-IPM trial 2013

Post-treatment Change

Percent change in lygus post-treatment

- Untreated
- Assail
- Beleaf
- Athena
- Brigade
- R+B-EverGreen
- Molt+x-Bot+M
- Grandevo
- BotaniGard
- EverGreen
- Bot Assail
- Bot+Bef Bot+Ath
- Closer+Hi Closer+Hi Bot+Grand
- Closer+Lo Closer+Lo Beleaf

Change
Conclusions

- Some insecticides provided good control of lygus bug
- *B. bassiana* can be an effective alternative to chemical insecticides
- Combination of *B. bassiana* and azadirachtin can be a reasonable substitute for their chemical equivalents
- Resistance management through
 - Rotating and/or combining different modes of action
 - Lowering pesticide rates
 - Using non-chemical alternatives
Strawberry-Miticide trial 2013

Treatments

1. Untreated
2. Acramite 50 WS (bifenazate) 1 lb
3. Agri-Mek SC (abamectin) 4.29 fl oz
4. BotaniGard ES (B. bassiana) 1qrt + Acramite 0.75 lb
5. Eco-Mite 1% (rosemary and cotton seed oils)
6. Fujimite 5 EC (fenpyroximate) 2 pt
7. Fujimite XLO 2 pt
8. Grandevo (C. subtsugae) 2 lb
9. Venerate (MBI206) 2 gal
10. Nealta (cyflumetofen) 13.7 fl oz

Spraying 150 gal/acre at 70 psi with hollow cone nozzle

Plot size 14’ longX44” wide bed replicated 4 times

Treated on May 16 and 25, 2013
Strawberry-Miticide trial 2013

![Graph showing various treatments and their effectiveness in reducing eggs and mobile mites. The graph compares different miticides and their impact on post-treatment number/leaflet.]
Strawberry-Miticide trial 2013

Post-treatment-Eggs+Mobile

Number/leaflet

- Untreated
- Acramite 50WS
- Agri-Mek SC
- BotaniGard+Acramte
- Eco-Mite
- Fujinite SEC
- Fujinite XLO
- Grandevo
- MBI 206
- Nealta
Strawberry-Miticide trial 2013

Post-treatment-All

<table>
<thead>
<tr>
<th>Product</th>
<th>Percent Reduction compared to control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acramite 50WS</td>
<td>-60</td>
</tr>
<tr>
<td>Agri-Mek SC</td>
<td>-60</td>
</tr>
<tr>
<td>BotaniGard+Acra.</td>
<td>-60</td>
</tr>
<tr>
<td>Eco-Mite</td>
<td>-60</td>
</tr>
<tr>
<td>Fujinite 5EC</td>
<td>-60</td>
</tr>
<tr>
<td>Fujinite XLO</td>
<td>-60</td>
</tr>
<tr>
<td>Grandevo</td>
<td>-60</td>
</tr>
<tr>
<td>MBI 206</td>
<td>-60</td>
</tr>
<tr>
<td>Nealta</td>
<td>-60</td>
</tr>
</tbody>
</table>
Conclusions

- Treatments provided moderate control of mites.
- Nealta and Eco-Mite provided the highest reduction followed by Venerate (MBI206) and Fujimite 5EC compared to untreated control.
- Combining *B. bassiana* with chemical miticides can play a role in resistance management.
Strawberry diseases

Gray mold or Botrytis fruit rot
Strawberry diseases

Powdery mildew

Doug Gubler
Strawberry-Fungicide trial 2013

<table>
<thead>
<tr>
<th>Trt</th>
<th>1st spray</th>
<th>2nd spray</th>
<th>3rd spray</th>
<th>4th spray</th>
<th>5th spray</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Untreated</td>
<td>Untreated</td>
<td>Untreated</td>
<td>Untreated</td>
<td>Untreated</td>
</tr>
<tr>
<td>2</td>
<td>Pristine 20</td>
<td>Pristine 20</td>
<td>Pristine 20</td>
<td>Pristine 20</td>
<td>Pristine 20</td>
</tr>
<tr>
<td>3</td>
<td>Merivon 9</td>
<td>Merivon 9</td>
<td>Merivon 9</td>
<td>Merivon 9</td>
<td>Merivon 9</td>
</tr>
<tr>
<td>4</td>
<td>Merivon 11</td>
<td>Merivon 11</td>
<td>Merivon 11</td>
<td>Merivon 11</td>
<td>Merivon 11</td>
</tr>
<tr>
<td>5</td>
<td>Pristine 20</td>
<td>Fracture 24.4</td>
<td>Pristine 20</td>
<td>Fracture 24.4</td>
<td>Pristine 20</td>
</tr>
<tr>
<td>6</td>
<td>Switch 14</td>
<td>Fracture 24.4</td>
<td>Switch 14</td>
<td>Fracture 24.4</td>
<td>Switch 14</td>
</tr>
<tr>
<td>7</td>
<td>Switch 14</td>
<td>Fracture 18.2 + Abound 12</td>
<td>Switch 14</td>
<td>Fracture 18.2 + Abound 12</td>
<td>Switch 14</td>
</tr>
<tr>
<td>8</td>
<td>Rally 4</td>
<td>Fracture 24.4</td>
<td>Rally 4</td>
<td>Fracture 24.4</td>
<td>Rally 4</td>
</tr>
<tr>
<td>9</td>
<td>Rally 4</td>
<td>Fracture 20.5 + Abound 10</td>
<td>Rally 4</td>
<td>Fracture 20.5 + Abound 10</td>
<td>Rally 4</td>
</tr>
</tbody>
</table>
Strawberry-Fungicide trial 2013-Var 324

Weight in grams from ~20 plants

- Fresh berries
- Infected berries

Treatment

Incidence and severity of powdery mildew

- Avg. Incidence
- Avg. Severity

Incidence and severity of powdery mildew

0.00 0.50 1.00 1.50

1 2 3 4 5 6 7 8 9

100 200 300 400 500 600 700 800 900

1 2 3 4 5 6 7 8 9
Conclusions

• Regularly monitor and apply fungicides at the first sign of disease
• Monitor weather conditions especially for gray mold
• Remove infected plant material
Strawberry diseases - Pallidosis
Strawberry diseases-Pallidosis

Red discoloration
Stunted growth
Severity of infection
Symptoms in new growth
Affected root system
Dieback
Strawberry diseases-Pallidosis

- **Pollen**
 - Apple mosaic
 - *Fragaria chiloensis* latent
 - Strawberry necrotic shock

- **Nematodes**
 - *Arabis* mosaic
 - Raspberry ringspot
 - Strawberry latent ringspot
 - Tomato black ring
 - Tomato ringspot

- **Thrips**
 - Strawberry necrotic shock

- **Aphids**
 - *Strawberry chlorotic fleck*
 - *Strawberry crinkle*
 - *Strawberry latent C*
 - *Strawberry mild yellow edge*
 - *Strawberry mottle*
 - *Strawberry pseudo mild yellow edge*
 - *Strawberry vein banding*

- **Greenhouse whiteflies**
 - Beet pseudo-yellows
 - Strawberry pallidosis associated

Transmitted by others
- Mild or no symptoms

Whitefly-transmitted
- Variable degrees of symptoms of pallidosis-related decline
- Mild or no symptoms
Vectors of pallidosis disease

Greenhouse whitefly

Western flower thrips

Strawberry aphid
Strawberry pallidosis disease-Video

http://www.youtube.com/watch?v=m1YRRE_PY8s
Acknowledgments

Growers and Team
Dave Peck

Technical Assistance
Chris Martinez
Jacob Conway
Maria Murrietta

Industry
California Strawberry Commission
Casey Butler, Syngenta
Curt Engle, United Phosphorus
Eduardo Garcia, Chemtura
Joe Doccola, Arborjet
John Francis, Bioworks
Kate Walker, BASF
Luis Solari, Marrone Bio Innovations
Mac Learned, FMC
Pedro Hernandez, Nichino America
Randy Martin, Bioworks
Sanjeev Bangarva, BASF
Vijay Choppakatla, BioSafe Systems
Articles: http://ucanr.edu/strawberries-vegetables
 http://ucanr.edu/pestnews
Newsletter: http://ucanr.edu/ccah
Meeting presentations: http://ucanr.edu/meetingpresentations
Twitter: @calstrawberries and @calveggies
Facebook: strawberriesvegetables