Managing thrips on lettuce, aphids on broccoli, and the new invasive pest Bagrada bug on cole crops

Surendra Dara
Strawberry and Vegetable Crops Advisor and Affiliated IPM Advisor
University of California Cooperative Extension
Santa Barbara and San Luis Obispo Counties
skdara@ucdavis.edu

@calstrawberries @calveggies
strawberriesvegetables
ucanr.org/strawberries-vegetables and ucanr.org/pestnews
Western flower thrips *Frankliniella occidentalis*

Second instar larva

Adult morphs

Feeding damage

Necrotic spots by tomato spotted wilt virus
Lettuce - experimental design

Treatments

1. Untreated control
2. Assail 30 SC (acetamiprid) 4 oz + DyneAmic (NIS) 0.1% v/v
3. Radiant SC (spinetoram) 8 fl oz + Dyne Amic 0.25%
4. BotaniGard 22 WP (*Beauveria bassiana*) 2 lb + DyneAmic 0.125%
5. Torac 15 EC (tolfenpyrad) 21 fl oz + DyneAmic 0.25%
6. Torac 15EC 21 fl oz + Lannate SP 0.75 lb + DyneAmic 0.25%
7. NNI-1171 21 fl oz (new ai) + DyneAmic 0.25%

Spraying 50* gal/acre at 70 psi with flat fan nozzle
(*100 gpa for BotaniGard)

Plot size 5 rows, 5.33’ wide 10’ long bed replicated 4 times

Planted on April 6, 2012

Treated on May 16 and 24 and June 6, 2012
Thrips populations during the study

- Untreated
- Acetamiprid
- Spinetoram
- B. bassiana
- Tolfenpyrad
- Tolfen.+Metho.
- NNI-1171

Number of thrips/plant vs Dates
Thrips after each spray application

Number of thrips/plant

- Untreated
- Acetamiprid
- Spinetoram
- B. bassiana
- Tolfenpyrad
- Tolfen.+Metho.
- NNI-1171

- Pre-treatment
- After I Spray
- After II Spray
- After III Spray

Data labels indicate statistical significance.
Thrips before and after the spray applications

- Untreated
- Acetamiprid
- Spinetoram
- B. bassiana
- Tolfenpyrad
- Tolfen.+Metho.
- NNI-1171

Number of thrips/plant

- Pre-treatment
- Post-treatment

Comparison: a, b, c
Percent change in thrips after treatment

- Untreated
- Acetamiprid
- Spinetoram
- B. bassiana
- Tolfenpyrad
- Tolfen.+Metho.
- NNI-1171
Conclusion

- Thrips numbers were significantly lower in chemical treatments compared to untreated control.

- Tolfenpyrad alone and with methomyl provided good control.

- Microbial control also has a potential for thrips management.
Cabbage aphid and green peach aphid

Cabbage aphid, *Brevicoryne brassicae*

Green peach aphid, *Myzus persicae*
Broccoli-experimental design

Treatments

1. Untreated control
2. Assail 30 SC (acetamiprid) 4 oz + DyneAmic (NIS) 0.1% v/v
3. BotaniGard 22 WP (*Beauveria bassiana*) 2 lb + DyneAmic 0.125%
4. Torac 15 EC (tolfenpyrad) 21 fl oz + DyneAmic 0.25%
5. Pyrifluquinazon 3.2 fl oz + DyneAmic 0.25%
6. NNI-1171 21 fl oz (new ai) + DyneAmic 0.25%
7. Closer (sulfoxaflor) 1.5 fl oz + DyneAmic 0.25%
8. Closer 2.0 fl oz + DyneAmic 0.25%

Spraying 50* gal/acre at 70 psi with flat fan nozzle (*100 gpa for BotaniGard*)

Plot size 5 rows, 5.33’ wide 20’ long bed replicated 4 times

Planted on July 31, 2012

Treated on September 5 and 25, 2012
Aphid populations during the study

- Untreated
- Acetamiprid
- B. bassiana
- Tolfenpyrad
- Pyrifluzinazon
- NNI-1171
- Sulfoxaflor 1.5
- Sulfoxaflor 2.0

Number of aphids/plant

Pre-treatment	I-3DAT	I-7DAT	I-13DAT	II-3DAT	II-7DAT	II-12DAT
0 | 1 | 2 | 3 | 4 | 5 | 6
Cabbage aphids

Number of cabbage aphids/plant

- Untreated
- Acetamiprid
- B. bassiana
- Tolfenpyrad
- Pyrifluquinazon
- NNI-1171
- Sulfoxaflor 1.5
- Sulfoxaflor 2.0

Pre-treatment
I-3DAT
I-7DAT
I-13DAT
II-3DAT
II-7DAT
II-12DAT

Number of cabbage aphids/plant
Green peach aphids

Number of green peach aphids/plant

- Untreated
- Acetamiprid
- B. bassiana
- Tolfenpyrad
- Pyrifluquinazon
- NNI-1171
- Sulfoxaflor 1.5
- Sulfoxaflor 2.0

Pre-treatment
- I-3DAT
- I-7DAT
- I-13DAT
- II-3DAT
- II-7DAT
- II-12DAT
Aphids after each spray application

- Untreated
- Acetamiprid
- B. bassiana
- Tolfenpyrad
- Pyrifluquinazon
- NNI-1171
- Sulfoxaflor 1.5
- Sulfoxaflor 2.0
Aphids before and after spray applications

- Untreated
- Acetamiprid
- B. bassiana
- Tolfenpyrad
- Pyrifluquinazon
- NNI-1171
- Sulfoxaflor 1.5
- Sulfoxaflor 2.0

Comparison of aphid counts before and after spray applications. Bars with different letters (a, b) indicate statistically significant differences.
Percent change in aphids after treatment

- Percent change after treatment

- Untreated
- Acetamiprid
- B. bassiana
- Tolfenpyrad
- Pyrifluquinazon
- NNI-1171
- Sulfoxaflor 1.5
- Sulfoxaflor 2.0
Cabbage aphids before and after spray applications
Percent change in cabbage aphids after treatment
Green peach aphids before and after spray applications

![Graph showing the number of green peach aphids/plant pre-treatment and post-treatment for different treatments.](image-url)
Percent change in green peach aphids after treatment

- Untreated
- Acetamiprid
- B. bassiana
- Tolfenpyrad
- Pyrifluquinazon
- NNI-1171
- Sulfoxaflor 1.5
- Sulfoxaflor 2.0

Percent change after treatment:
Conclusions

• Cabbage and green peach aphids responded differently to treatments.

• Sulfoxaflor provided good control for both aphid species.

• *B. bassiana* provided good control of green peach aphids which was similar to some chemical treatments
Bagrada bug, *Bagrada hilaris*

Order: Hemiptera
Family: Pentatomidae (Stink bugs)

Origin: Africa

Distribution: Asia and Europe and now in Arizona and California

Host plants: Mainly cruciflers. Also infests malvaceous, leguminaceous, cucurbits, and graminaceous plants

London rocket, wild mustards, pepperweed, and others
In Los Angeles County in 2008.

California: Kern, Imperial, Los Angeles, Monterey, Orange, Riverside, San Diego, Santa Barbara, San Luis Obispo, and Ventura Counties

Arizona: Yuma, La Paz, Maricopa, and Pinal Counties

New Mexico: Luna, Socorro, Valencia, and Santa Fe Counties

Nevada, Utah, and Texas
Bagrada bug-Host range

Brassicaceae: Alyssum, arugula, broccoli, cabbage, cauliflower, collards, cress, kale, radish, rutabaga, turnips, etc.

Cucurbitaceae: Cantaloupes and watermelons

Graminaceae: Corn, millets, and wheat

Leguminaceae: Various legumes

Malvaceae: Cotton and okra

Rosaeae: Strawberry

Solanaceae: Potato
Bagrada bug-Biology

Eggs

- Barrel-shaped, laid singly or in small groups on plant surface or in soil
- Each female lays up to 95 eggs
- Whitish and turn orange with age
- Hatch in 3-6 days
Bagrada bug-Biology

Nymphs
• There are five nymphal instars
• Newly emerged nymphs are reddish orange and develop white and black markings with time
• Nymphal stage lasts for 2-3 weeks

Ta-I Huang, Univ Arizona
Adults
• They are 1/5-1/3” long and 1/8-1/6” wide
• Black with orange and white markings
• Females are larger than males
Bagrada bug-Biology

Harlequin bug vs. Bagrada bug
Bagrada bug-Damage

Suck the plant juices with their needle-like mouthparts.

Stippling with necrotic spots, stunted growth, loss of apical dominance, formation of multiple heads and plant death.
Bagrada bug - Chemical control

2012 Small plot broccoli trials at Yuma Ag Center (John Palumbo and Ta-I Huang)

<table>
<thead>
<tr>
<th>Treatment</th>
<th>1-Day After Treatment</th>
<th>3-Days After Treatment</th>
<th>5-Days After Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bifenthrin</td>
<td>0.0 b</td>
<td>0.5 d</td>
<td>2.3 b</td>
</tr>
<tr>
<td>Methomyl</td>
<td>1.8 b</td>
<td>2.5 bcd</td>
<td>4.0 ab</td>
</tr>
<tr>
<td>Chlorpyrifos</td>
<td>1.5 b</td>
<td>1.5 cd</td>
<td>3.0 ab</td>
</tr>
<tr>
<td>Clothianidin</td>
<td>0.5 b</td>
<td>4.0 ab</td>
<td>5.0 a</td>
</tr>
<tr>
<td>Dinotefuran</td>
<td>0.5 b</td>
<td>2.0 bcd</td>
<td>6.8 a</td>
</tr>
<tr>
<td>Acephate</td>
<td>0.5 b</td>
<td>3.5 abc</td>
<td>4.0 ab</td>
</tr>
<tr>
<td>Untreated control</td>
<td>7.3 a</td>
<td>5.8 a</td>
<td>6.8 a</td>
</tr>
</tbody>
</table>
Bagrada bug—Control

2012 Small plot broccoli trials at Yuma Ag Center (John Palumbo and Ta-I Huang)

<table>
<thead>
<tr>
<th>Treatment</th>
<th>1-Day After Treatment</th>
<th>3-Days After Treatment</th>
<th>5-Days After Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bifenthrin</td>
<td>0.0 b</td>
<td>1.3 bc</td>
<td>1.5 a</td>
</tr>
<tr>
<td>Methomyl</td>
<td>0.0 b</td>
<td>1.0 c</td>
<td>4.0 a</td>
</tr>
<tr>
<td>Chlorpyrifos</td>
<td>0.8 b</td>
<td>5.0 ab</td>
<td>4.0 a</td>
</tr>
<tr>
<td>Clothianidin</td>
<td>0.8 b</td>
<td>4.3 abc</td>
<td>5.5 a</td>
</tr>
<tr>
<td>Dinotefuran</td>
<td>0.3 b</td>
<td>1.3 bc</td>
<td>4.0 a</td>
</tr>
<tr>
<td>Acephate</td>
<td>0.8 b</td>
<td>1.5 bc</td>
<td>5.5 a</td>
</tr>
<tr>
<td>Untreated control</td>
<td>5.0 a</td>
<td>6.8 a</td>
<td>6.5 a</td>
</tr>
</tbody>
</table>
Bagrada bug—Non-chemical control

<table>
<thead>
<tr>
<th>Active Ingredient</th>
<th>Product*</th>
<th>Application Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beauveria bassiana strain GHA</td>
<td>Mycotrol O®</td>
<td>1 qrt/100 gal</td>
</tr>
<tr>
<td>Metarhizium brunneum strain F 52</td>
<td>Met 52 ®</td>
<td>1 qrt/100 gal</td>
</tr>
<tr>
<td>Isaria fumosorosea strain FE9901</td>
<td>NoFly ®</td>
<td>28 oz/100 gal</td>
</tr>
<tr>
<td>Chromobacterium subtsugae strain PRAA4-1</td>
<td>Grandevo®</td>
<td>3 lb/100 gal</td>
</tr>
<tr>
<td>Pyrethrins + potassium salts of fatty acids</td>
<td>Safer Yard & Garden Insect Killer®</td>
<td>Ready-to-use</td>
</tr>
<tr>
<td>Essential oil blend</td>
<td>Rid-Bugs®</td>
<td>60 ml/gal</td>
</tr>
</tbody>
</table>

Verify label status before using any of these materials
Bagrada bug-Non-chemical control

B. hilaris on treated broccoli

Fungus emerging from surface-sterilized cadavers

Martin, Palumbo, Dara, and Natwick 2013
Bagrada bug - Non-chemical control

B. hilaris killed by *B. bassiana*

B. hilaris killed by *M. brunneum*

B. hilaris killed by *I. fumosorosea*

Martin, Palumbo, Dara, and Natwick 2013
Bagrada bug-Non-chemical control

Percent infection/mortality

- Untreated
- Mycotrol-O: *B. bassiana*
- Met 52: *M. brunneum*
- NoFly: *I. fumosorosea*
- Grandevo: *C. subtsugae*
- Safer: Pyrethrins + Insecticidal soap
- Rid-Bugs: Essential oils

Martin, Palumbo, Dara, and Natwick 2013
Bagrada bug-Cultural control

• Consider removing weed hosts
• Ensure transplants and other nursery materials are free of Bagrada bugs before planting
• Cultivate to destroy bugs and eggs in the soil; research on effectiveness has not been completed
• Exclusion: row covers may prevent damage but research on effectiveness has not been done
• Shred and disc crop immediately after harvest
• Rotate to a non-host crop
Bagrada bug-Monitoring

• Look for Bagrada bug the morning after transplanting when the sprinklers are off.
• For direct-seeded cole crops, look for bugs as soon as seedlings emerge.
• Continue monitoring weekly until the 5- to 6-leaf stage in direct seeded and transplanted crops.
• After the 5- to 6-leaf stage, laboratory and field research show most plants can tolerate Bagrada bug feeding without significant injury or yield loss.
 ▪ Monitor mid-morning to late afternoon (10 a.m.–4 p.m.) when temperatures are near or above 86°F
 ▪ Look for fresh feeding on cotyledons and young leaves; look for wilted seedlings
 ▪ Look for bugs on plants underneath cotyledons and leaves, on the stem at the soil surface, in cracks in the soil, and under dirt clods
 ▪ After insecticide applications look carefully on the soil for dead bugs (bugs blend in with the soil and also play dead when disturbed)
Bagrada bug-Thresholds

- Prevent adults from feeding on plant terminals and small cotyledons in order to establish a quality stand.

- One adult per ten-foot row of seedlings or transplants causes stand loss or unacceptable plant damage.

- For transplants, chemigate at the first sign of damage or when adults are found.

- For direct-seeded crops, chemigate when seedlings first emerge.

- When stands are established, apply an insecticide when bugs or fresh damage is readily observed.

Martin, Palumbo, Dara, and Natwick 2013
Bagrada bug-Video

http://www.youtube.com/watch?v=gSj3AZoJIRM
Acknowledgments

Growers
Frank Costa
San Ysidro Farms

Technicians
Thomas Crottogini
Pedro Villela

Pesticide Industry
Curt Engle
Pedro Hernandez
Jesse Richardson

Pest infestations