Santa Barbara County
University of California
Santa Barbara County

Grower Notes and Pest News

First report of entomopathogenic fungi, Beauveria bassiana, Isaria fumosorosea, and Metarhizium brunneum promoting the growth and health of cabbage plants growing under water stress

Entomopathogenic fungi such as Beauveria bassiana (commercial formulations, BotaniGard and Mycotrol), Isaria fumosorosea (NoFly and Pfr-97), and Metarhizium brunneum (Met52) are primarily used for controlling arthropod pests.  Research in the recent years evaluated their endophytic (colonizing plant tissues) and mycorrhiza-like (associated with roots) relationship with plants and potential benefits in improving plant growth and health. Studies conducted in California showed that B. bassiana endophytically colonized strawberry plants and persisted for up to 9 weeks in various plant tissues (Dara and Dara, 2015a); promoted strawberry plant growth (Dara, 2013); and negatively impacted green peach aphids through endophytic action (Dara, 2016).  Soil application of M. brunneum appeared to have a positive impact on strawberry plants in withstanding twospotted spider mite infestations (Dara and Dara, 2015b).  Similarly, M. anisopliae reduced the salt stress in soybean (Khan et al., 2012) and M. robertsii enhanced root growth and nutrient absorption in switch grass and haricot beans (Behie et al., 2012; Sasan and Bidochka, 2012).  In another study, nitrogen obtained from an insect host through infection (entomopathogenic relationship) was transferred by B. bassiana and Metarrhizum spp. to a plant through an endophytic or mycorrhiza-like relationship.

Several beneficial microbe-based products are commercially available to promote plant growth under normal or stressful conditions and to boost plant defenses against pests and diseases.  However, several mycorrhizae do not form a symbiotic relationship with several cruciferous hosts and mycorrhizae-based products are typically not used in cole crops.  If entomopathogenic fungi, which have a great promise for pest management in IPM programs, could also promote plant growth and health through an endophytic or mycorrhiza-like relationship, they will maximize their potential for multipurpose use in crop protection and production and potentially reduce the cost of applying multiple products for multiple purposes.

A study was conducted in 2014 to evaluate the impact of B. bassiana, I. fumosorosea, and M. brunneum on potted cabbage plants growing in artificial light with reduced water.


About 3-week old cabbage (var. Supreme Vantage) transplants (obtained from Plantel Nurseries, Santa Maria, CA) were planted in Miracle-Gro® Moisture Control Potting Mix (NPKFe 0.21-0.07-0.14-0.10) in 650 ml containers.  Treatments included BotaniGard ES (1 ml), Met 52 EC (1 ml), NoFly WP (2.5 mg), SumaGrow  (2.3 ml), CropSignal (1 ml), Mykos Liquid (0.03 ml), and H2H (10 ml) in 100 ml of water which were added to each container in respective treatments.  Miracle-Gro alone was used as the control.  Each treatment had 10 plants which were grown under artificial lighting (75 W plant light in each corner).  To each container, 50 ml of water was added again on 42, 50, 64, and 81 days after planting.  Temperatures during the study were 56o (minimum), 71o (average), and 88o F (maximum).

Treatments used in the study

Data were collected as follows:

  • Plant health rating was recorded at 40 and 70 days after planting on a scale of 0 to 5 where 0=dead, 1=weak, 2=moderate-low, 3=moderate-high, 4=good, and 5=very good.
  • Plant survival was recorded at 40, 70, and 90 days after planting.
  • Shoot and root length were recorded at 90 days after planting by unearthing each plant from the containers.
  • Shoot-to-root ratio was calculated.
  • Plants from each treatment were placed in paper bags and dried in an oven at 98oF for 8 days.  Dry weight (biomass) of the plants was measured before sending them to an analytical lab for nutrient analysis.

Data were subjected to analysis of variance and significant means were separated using Least Significant Difference test.  Since some treatments had fewer plants by the end of the study, biomass measurement and nutrient analysis were done together for all the remaining plants and those two parameters were not subjected to statistical analysis.


Plant survival: Beauveria bassiana was the only treatment where all the plants survived for 90 days of the observation period.  There was a 10 to 80% mortality in other treatments during the observation period.  Highest plant mortality was seen in SumaGrow and H2H treatments (P = 0.001 at 40 days after planting and

Plant health: Plants treated with B. bassiana were significantly and uniformly healthier (P < 0.00001) than the rest of the treatments on both observation dates with a ‘very good' rating.  Health of the plants growing in Miracle-Gro with no supplements also had a ‘good' rating and was better than the health of plants in most of the remaining treatments.  Plants treated with SumaGrow and H2H had poor health with a ‘weak' rating.

Shoot and root length: Length of the shoots was significantly higher (P < 0.00001) for plants treated with B. bassiana (29 cm) and M. brunneum (27.6 cm) compared to the rest of the treatments.  Plants treated with Miracle-Gro alone had a mean shoot length of 22.9 cm, but the remaining treatments had significantly shorter shoots that varied from 13-18 cm.  Plants growing in Miracle-Gro alone and those supplemented with Crop Signal had significantly longer (P < 0.00001) roots.

Shoot-to-root ratio: Shoot-to-root ratio, which indicates the shoot growth in relation to the root growth, was significantly higher (P < 0.00001) for plants that were treated with B. bassiana and M. brunneum followed by those treated with I. fumosorosea and others.

Biomass and nutrient absorption: Plants treated with B. bassiana had relatively higher biomass.  When the plant weight as a result of accumulated nutrients was calculated by dividing the weight with respective nutrient content, B. bassiana appeared to have relatively higher output for nitrogen, phosphorus, and potassium based on numerical values. Such an effect for iron was seen in all, except H2H, treatments compared to Miracle-Gro alone. However, these values are only indicative as they were not subjected to statistical analysis.

This is the first report of the direct impact of entomopathogenic fungi on cabbage plant growth. Beauveria bassiana and to some extent M. brunneum had a positive impact on plant growth and health even under reduced water conditions. If they could be used to promote plant growth, improve water and nutrient absorption, withstand saline or drought conditions, increase yields in addition to their typical use as biopesticides, then they can play a critical role as holistic tools in sustainable agriculture.

Acknowledgements: Thanks to Plantel Nurseries Inc. for donating cabbage transplants, and Advanced Soil Technologies, Bioworks Inc, California Safe Soil, Novozymes Biologicals, Reforestation Technologies International, and SumaGrow USA for various treatment materials used in this study.


Behie, S.W., P.M. Zelisko, and M.J. Bidochka. 2012. Endophytic insect-parasitic fungi translocate nitrogen directly from insects to plants. Science 336: 1576-1577.

Dara, S. K. 2013.  Entomopathogenic fungus, Beauveria bassiana promotes strawberry plant growth and health.  UCCE eNewsletter Strawberries and Vegetables, 30 September, 2013. (

Dara, S. K. and S. R. Dara.  2015a.  Entomopathogenic fungus, Beauveria bassiana endophytically colonizes strawberry plants.  UCCE eNewsletter Strawberries and Vegetables, 17 February, 2015. (

Dara, S. K. and S. R. Dara.  2015b.  Soil application of the entomopathogenic fungus, Metarhizium brunneum protects strawberry plants from spider mite damage.  UCCE eNewsletter Strawberries and Vegetables, 18 February, 2015. (

Dara, S. K.  2016.  Endophytic Beauveria bassiana negatively impacts green peach aphids on strawberries.  UCCE eNewsletter Strawberries and Vegetables, 2 August, 2016. (

Sasan, R.K. and M.J. Bidochka. 2012. The insect-pathogenic fungus Metarhizium robertsii (Clavicipitaceae) is also an endophyte that stimulates plant root development. Amer. J. Bot. 99:101-107.

Posted on Monday, September 19, 2016 at 12:03 PM

Detection and reduction of miticide resistance in the twospotted spider mite, Tetranychus urticae

Twospotted spider mite (TSSM) is a global pest infesting a wide variety of crops.  TSSM adapts to new hosts very quickly compared to other arthropods and this ability is attributed to the groups or families of genes that detoxify poisonous plant compounds (Grbić et al., 2011).  In just nine generations, TSSM was adapted to a resistant cucumber variety (Gould 1978) and this adaptation allowed them to use potato and tobacco as hosts (Gould, 1979) and imparted cross resistance to three organophosphate pesticides (Gould et al., 1982). 

Genetic makeup of TSSM also helps to develop resistance to miticides and it has the highest incidence of resistance to pesticides among arthropods (Van Leeuwen et al., 2010; Grbić et al., 2011).  Head and Savinelli (2008) reported that TSSM tops the list of arthropods with pesticide resistance by having resistance to 79 active ingredients in 325 cases based on the arthropod resistance database from Michigan State University by Whalon et al. (2006).  However, in the current database, the number of resistance cases for TSSM went up to 498 (Table 1).

Multiple factors that contribute to the success of TSSM, rapid development of pesticide resistance, and the ability to feed on a large number of plant species include the following:

i) Short life cycle and high fecundity that lead to multiple generations in a short time.

ii) Haplo-diploid sex determination system, where males develop from unfertilized eggs and females from fertilized eggs.  As a results unfavorable recessive alleles will be removed from mite populations.

iii) Spinning of a strong, but very thin webbing that provide protection against natural enemies

iv) Multiple families of detoxification genes that allow digestion, detoxification, and transportation of toxic metabolites.

v) Lateral transfer of genes from bacteria, fungi, and other organisms through lateral gene transfer which facilitated digestion and detoxification of xenobiotics.

vi) Large number (39) of multidrug resistance proteins compared to a smaller number (9-14) in vertebrates or invertebrates.

Since TSSM is a global pest on multiple hosts, the chances of exposure to pesticides is high, which creates    a high selection pressure for resistance.  Repeated use of effective pesticides renders them ineffective due to resistance development. Gould et al. (1991) reported slower adaptation of TSSM when a lower level of host plant resistance was combined with natural enemies rather than high host plant resistance alone.  Monitoring resistance and adopting integrated pest management (IPM) practices is critical in managing TSSM.

General recommendations for managing TSSM:

  1. Regularly monitor several parts of the field for mite infestations and make appropriate treatment decision depending on the level and distribution of mite populations and environmental conditions.
  2. Consider an IPM approach by using biological control options (release of predatory mites), modifying cultural practices (avoiding water stress and excessive nitrogen fertilization), and applying botanical (rosemary oil or other similar products), microbial (BotaniGard, Pfr-97, Met 52, Grandevo, and Venerate), or chemical (Table 2) pesticides.
  3. Provide refuges that support susceptible mite populations to delay resistance development.
  4. When applying chemical miticides rotate those among different mode of action (MoA) groups.  Use softer chemicals when predatory mites are used.
  5. Periodically monitor miticide efficacy and signs of resistance development.  If resistance is suspected, conduct a simple bioassay to confirm before field application of the miticide.  Collect several leaves samples from different parts of the field with TSSM suspected to have resistance to a particular miticide.  Prepare a small quantity of the spray liquid in a container following field application rates.  Dip the leaves in the spray liquid and keep them in a covered container (not airtight) in a cool, dry place.  Check 48 hours after the exposure to determine the efficacy of or resistance to the miticide based on TSSM mortality.

Bioassay to determine miticide resistance in twospotted spider mites.

Additional information on TSSM and its management in strawberries can be found at:


Gould, F.  1978.  Predicting the future rresistance of crop varieties to pest populations: a case study of mites and cucumbers.  Environ. Entomol. 7: 622-626.

Gould, F.  1979.  Rapid host range evolution in a population of the phytophagous mite Tetranychus urticae Koch.  Evolution 33: 791-802.

Gould, F. Carroll, C. R., and Futuyma, D. J.  1982.  Cross-resistance to pesticides and plant defenses: a study of the two-spotted spider mite.  Entomol. Exp. Appl. 31:175-180.

Grbić, M., Van Leeuwen, T., Clark, R.M., Rombauts, S., Rouzé, P., Grbić, V., Osborne, E.J., Dermauw, W., Ngoc, P.C.T., Ortego, F. and Hernández-Crespo, P.  2011. The genome of Tetranychus urticae reveals herbivorous pest adaptations. Nature, 479: 487-492. DOI: 10.1038/nature10640

Head, G. and C. Savinelli.  2008.  Adapting insect resistance management programs to local needs.  In: Onstad, D. W. (Ed.) Insect Resistance Management: Biology, Economics, and Prediction, Academic Press, United Kingdom, pp. 89-106.

Van Leeuwen, T., Vontas, J., Tsagkarakou, A., Dermauw, W. and Tirry, L.  2010. Acaricide resistance mechanisms in the two-spotted spider mite Tetranychus urticae and other important Acari: a review. Insect Biochem. Mol. Biol. 40: 563–572.

Whalon, M. E., Mota-Sanchez, D., Hollingworth, R. M., and Duynslager, L.  2006.  Michigan State University Arthropod Resistance Database. 

Posted on Wednesday, September 14, 2016 at 4:48 PM

New organic-approved formulations of the entomopathogenic fungus, Beauveria bassiana

Beauveria bassiana is a naturally occurring fungus that is pathogenic to several groups of arthropods.  It is available in different commercial formulations for pest management in agriculture, nurseries, landscape, greenhouse, turf, and home gardens.  BotaniGard ES and 22WP are the conventional formulations and Mycotrol-O was the organic-approved formulation, all distributed by BioWorks, Inc.  After the OMRI organic certification for Mycotrol-O expired in August, 2015, the Butte, MT based manufacturer, LAM International, changed the formulation with an approved inert ingredient.  Mycotrol ESO and Mycotrol WPO are the two new organic-approved formulations of B. bassiana registered for various pests for different situations. Both formulations have WSDA organic certifications. Unlike Mycotrol-O, ESO and WPO formulations have specific crop uses and it is important to verify labels for appropriate use.

Mycotrol ESO

It is similar to BotaniGard ES except for an organic-approved mineral oil carrier.  Mycotrol ESO has a shelf life of 18 months and does not require refrigeration.  However, as the product contains a live fungus, it is important to avoid exposure to high temperatures.  Mycotrol ESO is registered for several agricultural crops and multiple pests except for cranberry girdler.

Mycotrol WPO

It is a formulation similar to BotaniGard 22WP except for the inert ingredients.  It has a shelf life of 12 months, which is shorter than the ESO formulation, but does not require refrigeration.  Avoiding storage in warmer conditions is important due to the live fungus in the formulation.  Mycotrol WPO is primarily used for greenhouse, nursery, landscape, interior scape, turf, and container soil applications.  Although it is registered for many agricultural crops, due to the lack of application instructions, it cannot be used on them.  Unlike Mycotrol-O and ESO, WPO formulation has fewer insects on the label and is not registered for certain species of plant bugs, weevils, all stem-boring Lepidoptera, foliage-feeding Lepidoptera, and leaf-feeding beetles.

Both ESO and WPO formulations have zero preharvest interval and 4 hours of restricted entry interval.   They can be tank-mixed with several other insecticides, miticides, fertilizers, and multiple fungicides.  An earlier study with BotaniGard ES showed its compatibility with fungicides Merivon, Microthiol Disperss, Rally, Rovral, and Switch (Dara et al., 2014).  However, Captan and Thiram were not compatible with B. bassiana

Beauveria bassiana and other entomopathogenic fungi play an important role in IPM.  Several studies showed their potential in managing strawberry and vegetable pests (Dara, 2013; 2015a, b, c, d & e).  While entomopathogenic fungi can be used as standalone treatment options in several circumstances, by combining and/or rotating with chemical or botanical pesticides, they serve as an important part of the IPM tool kit for multiple crops against multiple pests.

Bagrada bugs (above) and the glassy-winged sharpshooter (below) killed by Beauveria bassiana.  Fungus emerges from the insect cadaver and produces spores which can continue the infection process.  (Photos by Surendra Dara)
Western tarnished plant bug (lygus bug) killed by Beauveria bassiana.  (Photo by Surendra Dara)

Acknowledgement: Thanks to Daniel Peck, Bioworks, Inc. for the information on new Mycotrol formulations. 


Dara, S. K. 2013.  Managing aphids on broccoli and thrips on lettuce with chemical and microbial control options.  March 27, 2013, UCCE eNewsletter Strawberries and Vegetables.

Dara, S. K. 2015a.  Efficacy of botanical, chemical, and microbial pesticides on twospotted spider mites and their impact on predatory mites.  August 4, 2015, UCCE eNewsletter Strawberries and Vegetables.

Dara, S. K. 2015b.  Strawberry IPM 2013: managing insect pests with chemical, botanical, and microbial pesticides. October 21, 2015, UCCE eNewsletter Strawberries and Vegetables.

Dara, S. K. 2015c.  Strawberry IPM 2015: managing insect pests with chemical, botanical, microbial, and other pesticides. October 21, 2015, UCCE eNewsletter Strawberries and Vegetables.

Dara, S. K. 2015d.  Reporting the occurrence of rice root aphid and honeysuckle aphid and their management in organic celery.  August 21, 2015, UCCE eNewsletter Strawberries and Vegetables.

Dara, S. K. 2015e.  Strawberry IPM 2015: managing insect pests with chemical, botanical, microbial, and mechanical control options. November 30, 2015, UCCE eNewsletter Strawberries and Vegetables.

Dara, S.S.R., S. S. Dara, A. Sahoo, H. Bellam, and S. K. Dara. 2014.  Can entomopathogenic fungus, Beauveria bassiana can be used ffor pest managmentt when fungicides are used ffor disease management?  23 October, 2014, UCCE eNewsletter Strawberries and Vegetables.

Posted on Thursday, September 1, 2016 at 1:26 PM

Driscoll’s, Plantel Nurseries, and Solex collaboration leads to the first mechanical strawberry transplanter

Mechanical strawberry transplanter, the first of its kind in California, developed from collaboration among Driscoll's, Plantel, and Solex.  (Photo by Surendra Dara)

Strawberry is one of those crops with high input costs and labor is one of the major expenses in strawberry production.  Both nursery and fruit production operations require a high volume of manual labor for planting, tending to the plants, processing of transplants or harvesting fruits.  Shortage of skilled farmworkers is a major challenge that strawberry industry is currently facing and it is even a bigger problem for summer planting when help is also needed for fruit harvesting from previous year's fall plantings.  Driscoll's, known as the largest berry producer in the world, developed a strawberry transplanter, which is a significant advancement in mechanization of transplanting, one of the two major manual operations in the strawberry production.

               Driscoll's team demonstrated their 3-bed transplanter to some growers on June 20, 2016 in an organic strawberry field in the Santa Maria area.  Chris Jenkins, Product Specialist at Driscoll's conceived the idea and worked with Chris Waldron at Plantel Nurseries and Matt Phillips at Solex in developing the first mechanical strawberry transplanter.  Tim McDonald at Guadalupe Hardware also helped in this development.  They experimented first with their 1-bed transplanter in Februrary, 2016 using celery transplants, which were grown to represent the strawberry transplants that would be available in June.  In the meantime, they developed a 3-bed transplanter in the next few months.  On June 10, Driscoll's planted 10 acres of strawberries using their new 3-bed transplanter.  The bulk of the misted tips are being propagated locally in standard nursery greenhouses in Nipomo.

              The Italian manufacture, Checchi e Magli built the original transplanter that is modified by Driscoll's, Plantel Nurseries, and Solex for strawberries. “We took the Italian machine used for transplanting peppers and other crops in mulch and modified it for strawberries,” said Chris Waldron.  “It costs about $46,000 for the transplanter units that cover three beds.  With the tractor, racks, seating, and other equipment, the total cost could be about $120,000 for the entire unit.”

Misted tip strawberry transplants locally grown in greenhouses in Nipomo.  (Photo by Surendra Dara)

Crew loading the transplant trays. (Photo by Surendra Dara)

It is estimated that when planting a traditional bare root transplant, 10 farmworkers (including a plant distributor, a forklift driver, and a crew boss) are required to work an eight hour day to transplant one acre of acre of strawberry, which typically has 28,000 plants for a 4-row/bed configuration.  The mechanical transplanter can plant 10 acres in a day with the help of a 19-member crew, which includes the tractor driver, a plant handler/loader, 12 planters (one per each plant line loading the transplants into the planting slots), and five people checking the transplanted plants on the bed.  What used to take 100 people to manually transplant 10 acres can now be done with just 19 people.  “Harvesting crew members get about $30/hour and putting them on a transplanting job with about $10/hour is not ideal,” said Chris Jenkins.  “With the help of this machine, we can now engage the farmworkers in a high paying job.  It is socially, economically, and ergonomically a big improvement and helps our field crew tremendously.  As the transplanter does most of the work, it will allow the available labor to focus on harvesting fresh market strawberries that fetch a higher price than processing strawberries.  But one point I would like to highlight is that we are not displacing jobs with the machine.  Generally, no one wants to do the transplanting job when harvesting is obviously the preferred job.”

A 12-member team feeds the transplants (above) while two members check on the beds and ensure that all plants are in a good condition.  (Photos by Surendra Dara)

Chris Waldron (Plantel Nurseries) instructing a crew member who is verifying the plants. (Photo by Surendra Dara)

Happy and proud Chris Jenkins (Driscoll's) standing in a newly transplanted field (above) and Chris Waldron (Plantel Nurseries) in front of the mechanical strawberry transplanter (below) (Photos by Surendra Dara)

Some of the advantages of the mechanical transplanter include:

  • Efficient and uniform transplanting that requires less time and manpower.
  • Avoidance of human errors in planting depth, j-roots, and other such issues in manual planting of bare root transplants.
  • Misted tip transplants actively growing and are not dormant like bare root transplants.  They are also in an advanced growth stage compared to bare root transplants and will likely start fruit production 2-3 weeks earlier than the latter.
  • Once separated from the mother plants, it takes about 6 weeks for the misted tip transplants, while several months of field production and refrigeration are required for bare root transplants.
  • Local production of misted tip transplants is more likely to adjust to grower needs and probably has a better control over producing uniform and good quality transplants that can be easily supplied without long distance transportation.
  • It is less likely to have soilborne diseases from misted tip transplants compared to the bare root transplants from a traditional infield nursery.

About 7 weeks after transplanting, strawberry plants look healthy and already started producing fruit (Photo by Chris Jenkins, Driscoll's)

According to Chris Jenkins, fruit yields from misted tip transplants were nearly twice as much as the yields from bare root plants in their 2015 study.  Uniform planting, better plant health, and early fruit production could have contributed to higher yields from the misted tip plants.

Development of the strawberry transplanter is a major improvement to the strawberry production technology with a significant contribution to the labor shortage issue. 

Posted on Thursday, August 11, 2016 at 12:48 PM

Ficus leaf-rolling psyllid, Trioza brevigenae: a new pest of Ficus microcarpa in southern California

Ficus microcarpa, a common ornamental landscape tree (top).  Leaf rolling by the ficus leaf-rolling psyllid, Trioza brevigenae (bottom).  (Photos by Donald R. Hodel, UCCE)

A psyllid, perhaps new to the Western Hemisphere, has been found on Ficus microcarpa (Chinese banyan, Indian laurel fig) in Los Angeles, Orange, San Bernardino, Ventura, San Diego, and Riverside counties.  It causes a distinctive, tight, and typically complete rolling of the leaves.  Ficus microcarpa is one of the most common, useful, and widespread ornamental landscape trees, and has long been a target for numerous pests.

Alessandra Rung, an entomologist and thrips specialist at the California Department of Food and Agriculture, with the help of Daniel Burckhard, a psyllid specialist at the Natural History Museum of Basel, Switzerland identified the psyllid as Trioza brevigenae Mathur.  This psyllid does not have a common name and we refer to it as the ficus leaf-rolling psyllid (FLRP).  FLRP belongs to the family Triozidae in the order Hemiptera.  Triozids are commonly known as tip sheet fleas and along with the members of seven other closely related families, they are also referred to as jumping plant-lice, which is a psynonym for psyllids (Burckhardt and Ouvrard, 2012).

Origin and distribution

FLRP was first detected by coauthor, Linda Ohara on trees in Carson south of Los Angeles in February, 2016 during a routine survey of pests on F. microcarpa (sometimes erroneously referred to as F. nitida or F. retusa)and later observed in several areas including western Los Angeles, Pasadena, Duarte, LongBeach, Lakewood, Claremont, and Universal City (San Fernando Valley) in Los Angeles County; Irvine and Anaheim in Orange County; Thousand Oaks in eastern Ventura County; Oceanside in northern San Diego County; Montclair in western San Bernardino County; and Corona in western Riverside County.  It is likely widespread, perhaps even outside this six-county area.

FLRP is native to India and is not reported from anywhere else in the world (Hodkinson, 1986; Ouvrard, 2013).  It is one of the 22 Trioza spp. in India (Yang and Raman, 2007; Ouvrard, 2013).  It is not clear how it arrived into the US, but the infestation appears to be a recent one as damage was not observed during a previous survey in January, 2016.


Leaf rolling starts at the tip of the leaf blade and eventually ends as tight rolls (Photos by Donald R. Hodel, UCCE)


FLRP causes a distinctive leaf-rolling of newly developing leaves are tightly rolled into a narrow cylinder, compressed to a diameter of 3-5 mm as they mature.  Leaf rolling is conspicuous on heavily infested trees.  Rolling appears to begin at the distal end or apex of the leaf and progresses adaxially along each margin towards the leaf base.  In some cases, only one margin rolls and stops at the midrib of the leaf.  Damage leaves are brittle, but remain green when only FLRP is present.  Other pests such as mealybugs and the leaf gall wasp, Josephiella microcarpae might also be present in the rolled leaves and cause discoloration or further deformation.  The tight leaf rolling of FLRP is distinct from the loose curling or folding from the Cuban laurel thrips, Gynaikothrips ficorum or the folded-leaf galls caused by the weeping fig thrips, G. uzeli, which also cause reddish scars on the damaged leaves (Dara and Hodel, 2015).  Spiders and other insects may also cause loose leaf rolling that can be easily distinguished from FLRP damage.

Leaf rolling and folding by spiders, which is different from the tight rolling by FLRP (Photo by Donald R. Hodel, UCCE)

Information on the severity or the extent of damage caused by FLRP is not clear, but under severe infestations excessive leaf rolling could affect photosynthesis and thus the plant health.  As seen in some specimens, leaf rolls might also harbor secondary pests.


Information on the biology of FLRP is lacking in scientific literature.  Adults are 2.6-2.8 mm long with brownish green head and thorax, and protruding red eyes.  Abdomen is green in young adults and turns brown with maturity.  Wings are 3 mm long, transparent with no color pattern, and extend beyond the posterior end of the abdomen.  Females are larger than males.  Adults are typically found outside and adjacent to the rolled leaves.  Nymphs are mobile, 1-2.5 mm long, and oblong with dark greyish tan bodies that turn brownish or brownish green with age.  Advanced nymphal instars have skirts of long, white, waxy filaments at cranial and caudal parts of their bodies.  Wingpads are also visible in latter instars and are extended anteriorly close to the eye level.  Eggs were not found during the observations.

Adult FLRP with protruding reddish eyes, green abdomen, and transparent wings (above).  Mature nymph with white, waxy filaments (below). (Photo by Gevork Arakelian, Los Angeles County)

Emergence of the adult FLRP (above).  Cast skins after the adult emergence (below).  (Photos by Gevork Arakelian, Los Angeles County)


Nymphal instars at different stages of development (above) and a mature nymph and adult FLRP (below).  (Photos by Donald R. Hodel, UCCE)


Adult FLRP with their typical posture of raised abdomens (Photo by Donald R. Hodel, UCCE)

Like many psyllid species, FLRP aligns its body at a 45 degree angle to the leaf surface with a raised abdomen.  It moves the abdomen sideways like a dog wagging its tail.  In a peculiar behavior that FLRP exhibited, adults extended the wings until they are at a right angle to the body and then waved them back and forth.

Being a tropical pest, FLRP was more detectable during warmer (25-30oC or 76-86oF or more) and still weather than during cooler, cloudy, and breezy weather conditions.


No information is currently available about the management of FLRP.  Leaf-rolls are likely to protect the immature stages from contact insecticides and possibly from some common natural enemies.  Although wings, lady beetles, and minute pirate bugs were found on the foliage of the infested trees, their role as potential biocontrol agents is not clear.  Initial observations indicated that infestations were higher on trees with younger leaves.  Since FLRP appears to have a tendency to infest newly emerging leaves, careful scouting and removal (and bagging) of the infested leaves can help reduce the spread of infestations.  Depending on the level of infestation and life stages of the pest, contact insecticides for adults and systemic insecticides against immature stages can be considered.  Ficus microcarpa cultivars Green Gem and Variegata, which are resistant to some pests, does not seem to resist FLRP.

If you see FLRP infestations contact your local UCCE or Ag Commissioner's office.  You may also contact me at 805-720-1700 or to help me track the distribution of the pest.

This article was based on the original article by Hodel et al. (2016) published in the e-journal, PalmArbor (


Burckhardt, D. and Ouvrard, D.  2012.  A revised classification of the jumping plant-lice (Hemiptera: Psylloidea).  Zootaxa 3509: 1-34.

Dara, S. K. and Hodel, D. R.  2015.  Weeping fig thrips (Thysanoptera: Phlaeothripidae) in California and a review of its biology and management options.  J. Integ. Pest Mngmt. 6: 2; DOI: 10.1093/jipm/pmv001.

Hodkinson, I. D.  1986.  The psyllids (Homoptera: Psylloidea) of the Oriental Zoogeographical Region: an annotated check-list.  J. Nat. Hstory 20: 299-357.

Hodel, D. R., Arakelian, G., Ohara, L. M., Wilen, C. and Dara, S. K.  2016.  The ficus leaf-rolling psyllid: a new pest of Ficus microcarpa.  PalmArbor 2: 1-9.

Ouvrard, D.  2013.  Psyl'list- The world Psylloidea database.

Yang, M.-M. and Raman, A.  2007.  Diversity, richness, and patterns of radiation among gall-inducing psyllids (Hemiptera: Psylloidea) in the orient and Eastern Palearctic.  Oriental Insects 41: 55-65.


Donald R.  Hodel, Landscape Horticulture Advisor, University of California Cooperative Extension, Los Angeles.

Gevork Arakelian, Entomologist, Los Angeles County Agricultural Commissioner/ Weights & Measures in South Gate, CA.

Linda M.  Ohara, Biological Science Lab Technician, El Camino College in Torrance, CA, a horticulturist, and a former nurserywoman.

Surendra K.  Dara, Strawberry and Vegetable Crops Advisor, University of California Cooperative Extension.

Cheryl Wilen, Area IPM Advisor, University of California Cooperative Extension, San Diego, CA.

Posted on Tuesday, August 9, 2016 at 7:40 AM
  • Author: Donald R. Hodel
  • Author: Gevork Arakelian
  • Author: Linda M. Ohara
  • Author: Surendra K. Dara
  • Author: Cheryl Wilen

Next 5 stories | Last story

Webmaster Email: